Zeng, Z., Wu, Y., Park, H., Wang, D., Yang, F., Soatto, S., & Lao, D., Hong, B. W.,
& Wong, A. (2024). Resolving scale ambiguities in monocular depth estimators through
language descriptions. Advances in Neural Information Processing Systems (NeurIPS
2024).
Lao, D., Yang, F., Park, H., Wang, D., Lu, S., Wong, A., & Soatto, S. (2024). On the
viability of monocular depth pre-training for semantic segmentation. European Conference
on Computer Vision (ECCV 2024).
Wu, Y., Liu, T. Y., Park, H., Soatto, S., Lao, D., & Wong, A. (2024). AugUndo: Scaling
up augmentations for monocular depth completion and estimation. European Conference
on Computer Vision (ECCV 2024).
Lao, D., Wu, Y., Liu, T. Y., Wong, A., & Soatto, S. (2024). Sub‑token ViT embedding
via stochastic resonance transformers. International Conference on Machine Learning
(ICML 2024).
Lao, D., Wang, C., Wong, A., & Soatto, S. (2024). Diffeomorphic template registration
for atmospheric turbulence mitigation. Conference on Computer Vision and Pattern Recognition
(CVPR 2024). (Highlighted)
Zeng, Z., Wang, D., Park, H., Yang, F., Soatto, S., Lao, D., & Wong, A. (2024). WorDepth:
Variational language prior for monocular depth estimation. Conference on Computer
Vision and Pattern Recognition (CVPR 2024).
Sun, Y., Lao, D., Yezzi, A., & Sundaramoorthi, G. (2024). A PDE-based explanation
of extreme numerical sensitivities and edge of stability in training neural networks.
Journal of Machine Learning Research (JMLR 2024).
Sun, Y., Lao, D., Sundaramoorthi, G., & Yezzi, A. (2022). Surprising instabilities
in training deep networks and a theoretical analysis. Advances in Neural Information
Processing Systems (NeurIPS 2022).
Lao, D., Zhu, P., Wonka, P., & Sundaramoorthi, G. (2021). Flow-guided video inpainting
with scene templates. International Conference on Computer Vision (ICCV 2021).
Yang, Y., Lao, D., Sundaramoorthi, G., & Soatto, S. (2020). Phase consistent ecological
domain adaptation. Conference on Computer Vision and Pattern Recognition (CVPR 2020).
Lao, D., & Sundaramoorthi, G. (2019). Minimum delay object detection in videos. International
Conference on Computer Vision (ICCV 2019).
Lao, D., & Sundaramoorthi, G. (2018). Extending layered models to 3D motion. European
Conference on Computer Vision (ECCV 2018).
Lao, D., & Sundaramoorthi, G. (2017). Minimum delay moving object detection. Conference
on Computer Vision and Pattern Recognition (CVPR 2017).
Honors degree in mathematics by the College of Zhiyuan, SJTU, 2015
This website uses cookies to ensure site visitors get the best experience on our website. By continuing to use this site, you accept our use of cookies and Privacy Statement. To learn more, please visit LSU Privacy Statement.